↳ ITRS
↳ ITRStoIDPProof
z
f(x, y) → Cond_f(>@z(x, y), x, y)
Cond_f(TRUE, x, y) → f(+@z(x, 1@z), +@z(y, 2@z))
f(x0, x1)
Cond_f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(x, y) → Cond_f(>@z(x, y), x, y)
Cond_f(TRUE, x, y) → f(+@z(x, 1@z), +@z(y, 2@z))
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((+@z(y[1], 2@z) →* y[0])∧(+@z(x[1], 1@z) →* x[0]))
f(x0, x1)
Cond_f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>@z(x[0], y[0]) →* TRUE))
(1) -> (0), if ((+@z(y[1], 2@z) →* y[0])∧(+@z(x[1], 1@z) →* x[0]))
f(x0, x1)
Cond_f(TRUE, x0, x1)
(1) (F(x[0], y[0])≥NonInfC∧F(x[0], y[0])≥COND_F(>@z(x[0], y[0]), x[0], y[0])∧(UIncreasing(COND_F(>@z(x[0], y[0]), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_F(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_F(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_F(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧(UIncreasing(COND_F(>@z(x[0], y[0]), x[0], y[0])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(6) (>@z(x[0], y[0])=TRUE∧+@z(y[1], 2@z)=y[0]1∧y[0]=y[1]∧x[0]=x[1]∧+@z(x[1], 1@z)=x[0]1 ⇒ COND_F(TRUE, x[1], y[1])≥NonInfC∧COND_F(TRUE, x[1], y[1])≥F(+@z(x[1], 1@z), +@z(y[1], 2@z))∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
(7) (>@z(x[0], y[0])=TRUE ⇒ COND_F(TRUE, x[0], y[0])≥NonInfC∧COND_F(TRUE, x[0], y[0])≥F(+@z(x[0], 1@z), +@z(y[0], 2@z))∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
(8) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥)∧2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥)∧2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(10) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ 2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
(11) (y[0] ≥ 0 ⇒ 3 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
(12) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 3 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
(13) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ 3 + (-1)Bound + y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(F(+@z(x[1], 1@z), +@z(y[1], 2@z))), ≥))
POL(COND_F(x1, x2, x3)) = 2 + (-1)x3 + x2
POL(TRUE) = 0
POL(2@z) = 2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(F(x1, x2)) = 2 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = 1
COND_F(TRUE, x[1], y[1]) → F(+@z(x[1], 1@z), +@z(y[1], 2@z))
COND_F(TRUE, x[1], y[1]) → F(+@z(x[1], 1@z), +@z(y[1], 2@z))
F(x[0], y[0]) → COND_F(>@z(x[0], y[0]), x[0], y[0])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
f(x0, x1)
Cond_f(TRUE, x0, x1)